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We consider the Hamiltonian formulation of constrained dynamical systems with 
purely second-class constraints which flow from either one or two primary con- 
straints, known as one-chain and two-chain systems, studied recently in detail by 
Mitra and Rajaraman, and quantize the theories using Dirac's procedure. 

1. INTRODUCTION 

Mitra and Rajaraman (1990a) have recently studied the constraint alge- 
bra for systems with purely second-class constraints which flow from either 
one or two primary constraints, known as one-chain and two,chain systems. 
For these systems, they derived general results for the algebra of Poisson 
brackets at the classical level which (in the absence of commutator anomal- 
ies) also hold for the commutators of the constraint operators in the corre- 
sponding quantized theories. They have also developed a general method by 
which it is sometimes possible to convert a classical dynamical theory with 
second-class constraints into a gauge-invariant theory with first-class con- 
straints (Mitra and Rajaraman, 1990b), without any change in its physical 
content. 

In this paper we consider the Hamiltonian formulation (Dirac, 1950, 
1964) of one-chain and two-chain systems studied by Mitra and Rajaraman 
(1990a,b) and quantize both theories using Dirac's (1950, 1964) procedure. 
Some gauge-invariant reformulations of these theories have been considered 
by Mitra and Rajaraman (1990b). 
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The one-chain and two-chain systems are considered in Sections 2 and 
3, respectively. The summary and discussion is given in Section 4. 

2. ONE-CHAIN SYSTEM 

In this section we consider the Hamiltonian formulation (Dirac, 1950, 
1964) of a one-chain system (Mitra and Rajaraman, 1990a,b) with purely 
second-class constraints which flow from only one primary constraint. 

The Lagrangian (Mitra and Rajaraman, 1990a,b) 

N -- 1 (~i..{_ ~__~11 N )  2 N - t  
L=�89 ~, ci:q/+diq +qN ~ biqi (2.1) 

i = !  i = l  

where q~ (i= 1 . . . . .  N )  are canonical coordinates and ~=dqi /d t  are the 
canonical velocities and bi, d~, and c u are some real constants, describes a 
family of models. For some special sets of values of the constants b~, d~, 
and c u the Lagrangian (2.1) could yield first-class constraints�9 However, for 

�9 I | . . . . . .  
generic values [bi = ~, di = - ~, c~=~4• (identity matrix); t,j = 1 , . . . ,  4] it 
gives a theory with purely second-class constraints. We consider a specific 
example by taking N =  5 as considered by Mitra and Rajaraman (1990a, b). 
Our Lagrangian for N = 5 [Mitra and Rajaraman (1990a,b)] reads: 

4 4 
: I . __ 1 ",:2_0_ Ll ~(ql+ql �89189 ~ ((ti--~q5) �89 ~ q~ (2.2) 

i = 2  i = l  

In the following, we consider the Hamiltonian formulation of the theory 
described by the Lagrangian Ll equation (2.2), and quantize the system 
using Dirac's (1950, 1964) procedure. 

By varying the action $1 = S LI dt with respect to the coordinates q's we 
obtain the following Euler-Lagrange equations of motion: 

| .. 
ql + ~qs -q l  + �89 (2.3a) 

' " + �89 (2.3b) q5 - q2 
| .. 
~q5 - q3 + �89 = 0 (2.3c) 
| .. 
~qs- q4 + �89 = 0 (2.3d) 

4 4 

- � 89189189  ~ ((h- �89 ~', q~=O (2.3e) 
/ = 2  iffil 

It is easy to see that the Euler-Lagrange equations do not furnish dynamics 
for the coordinate q5, since the acceleration ~/5 does not appear in the equa- 
tions. For considering the Hamiltonian formulation, we calculate the 
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momenta (pi: = OLl/Oqi) : 

Pl = ql 1 + q~ -- ~q5 (2.4a) 

P2 = 02-- i ~q5 (2.4b) 

P 3  = q 3  - -  l ~qs (2.4c) 

P.  = ~ 4 _  1 ~q5 (2.4d) 

P5 = 0 (2.4e) 

We find that the momentum conjugate to q5 is zero (since L, does not involve 
05), and this implies that the theory possesses one primary constraint 

ZI :=ps,~0 (2.5) 

The symbol ~ expresses the "weak equality" in the sense of  Dirac (1950, 
1964). The canonical Hamiltonian Hic is 

4 4 

Hlc=�89 Z P~-P~q~ +q5 2 ' ' (~p , -  aq;) (2.6) 
i = 1  i = 1  

After including the primary constraint 271 of  the theory in the canonical 
Hamiltonian H ~  with the help of  the as-yet-undetermined Lagrange multi- 
plier v, we can write the total Hamiltonian H~r (Dirac, 1950, 1964) as 

H1 r = H~ ~ + Psv (2.7) 

For  the Poisson bracket {. ,  �9 } of  two functions A and B, we choose the 
convention 

{A, (2.8) 

Following Dirac's (1950, 1964) procedure, one finds that the system 
described by the Lagrangian L1 of  (2.2) has the following five secondary 
constraints (Mitra and Rajaraman, 1990a): 

4 

Z2 = �88 Z (q ; -2pi )  ~ 0  (2.9a) 
i = l  

4 
I I 

Z~ = ~ Z P~-  a(q, + 2 p , ) ~ 0  (2.9b) 
i = 1  

Z4 = �88 - 2pl) ~ 0  (2.9c) 
I 

Z5 = - ~(Pl + ql) ~ 0 (2.9d) 

Z6 = �88 2 p , ) - 3 q s ~ O  (2.9e) 



240 Kuls~eshtha 

The above secondary constraints have emerged from the single primary 
constraint Z,. Thus the theory described by the Lagrangian L, equation 
(2.2) represents a one-chain system (Mitra and Rajaraman, 1990a). The 
Hamilton equations of motion are 

O: -OH'r [(P,-ql+ �89 (p2 t - + ~ q s ) ,  
al, j 

(P3+~qs), (p4+ �89 v]; j = l ,  2, 3, 4, 5. (2.10a) 
.p_ OH, r_ [ (_p ,_  �88 ( -  �88 ( -  �88 

Oq: 
4 

(-�88 E (�89 j = 1 , 2 , 3 , 4 , 5  (2.10b) 
i = 1  

We now calculate the Poisson brackets among the constraints Z'S and obtain 
the matrix M~ o := {Z~, Za} as 

Ma# = 3 

with the inverse 

0 
0 

-1  

0 0 0 0 0 1" 
0 0 0 0 -1  0 
0 0 0 1 0 1 

0 -1  0 -1  0 
1 0 1 0 1 

0 -1  0 -1  0 m 

(2.11) 

0 
0 

0 
-1 

0 
1 

0 0 1 0 -1  
0 -1  0 1 0 

1 0 - 1  0 0 

0 1 0 0 0 
-1  0 0 0 0 

0 0 0 0 0 

(2.12) 

The constraints, by definition (Dirac, 1950, 1964) are second class if the 
matrix of the Poisson brackets among the constraints is invertible, and 
accordingly the contraints Z'S are second class in the terminology of Dirac 
(1950, 1964), and consequently the Dirac quantization procedure is appli- 
cable to our theory. The Dirac bracket {., �9 }D of tWO functions A and B is 
defined as 

{A, s ) .=  {A, s ) -  Z {A, s} (2.13) 
a , / 3  

where the F's are the constraints of the theory, and Aap (:= {Fa, F/~}) is the 
matrix of the Poisson brackets of the constraints F's. 
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The transition to quantum mechanics is made in the standard way by 
the replacement of the Dirac brackets by the operator commutation relations 
[ . , .  ], according to the Dirac (1950, 1964) quantization rule 

{A, B}D ~ (--i)[2, B]; i= x/'21 (2.14) 

where A and B are any classical dynamical variables, such as q's and p's 
whereas 2 and B are the corresponding quantum mechanical operators on 
some Hilbert space. 

Finally, the nonvanishing quantum commutators of the theory are 

[~j, ffj] = ~i; j = 2 ,  3, 4 (2.15) 

[~j , ,0k]  = ' "  -~z; j # k ,  j, k=2, 3, 4 (2.16) 

where the ~'s andfi's are the quantum mechanical operators (on some Hilbert 
space) corresponding to the q's and p's, respectively. 

3. TWO-CHAIN SYSTEM 

In this section we consider the Hamiltonian formulation for the con- 
strained dynamics of a two-chain system (Mitra and Rajaraman, 1990a,b) 
with purely second-class constraints which flow from two primary con- 
straints. The Lagrangian of the theory (Mitra and Rajaraman, 1990a,b) 
reads 

1 �9 L2 = ~ (q, + qs) 2 + �89 (42 + q6)2 + ,  .2 (q3 + 042 ) - qs(q2 + V1 (q3, q4)) 

+q6(q~ + V2(q3, q4))- V3(q3, q4) (3.1) 

In the following we consider the Hamiltonian formulation of the theory 
described by the Lagrangian Lz equation (3.1) and quantize the system using 
again Dirac's (1950, 1964) procedure. 

The Euler-Lagrange equations of motion for the Lagrangian Lz equa- 
tion (3.1) are obtained by varying the action $2 = S L2 art with respect to the 
coordinates q's as follows: 

q6--ql --05 = 0  

-q5 -/]2 - 06 = 0 

-q5 03Vl +q6 03V2- 03V3-#3 = 0  

-q5 04V1 + q6 0+V2-O4V3-q4 =0 

- (q2+ VI)=0 

-(qt  + V2) =0  

(3.2a) 

(3.2b) 

(3 .2c)  

(3.2d) 

(3.2e) 

(3.2f) 
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with 

02 
2 w  ~ ; Oi ~-2, etc. (3.3) 

di-  3qi Oqi 

One can see that the Euler-Lagrange equations do not furnish dynamics for 
the coordinates q5 and q6 since the accelerations #5 and ~6 do not appear in 
the equations. 

For considering the Hamiltonian formulation we need the momenta 

pl = ~1 + q5 (3.4a) 

p2 = ~2 + q6 (3.4b) 

p3 = q3 (3.4c) 

p4 = q4 (3.4d) 

P5 = 0 (3.4e) 

P6 = 0 (3.4f) 

We find that the momenta conjugate to q5 and q6 are zero (since L2 does 
not involve ~5 and ~6), and this implies that the theory possesses two primary 
constraints. 

~bl :=P5 ~0  (3.5a) 

I,gl :=p6~0 (3.5b) 

The canonical Hamiltonian H2, is 

4 

H _ !  2c- 2 ~. P~-q5 (P l -q2 -  V,)-q6(P2+q, + V2)+ V3 
i = l  

(3.6) 

H2r = H2c + psu q- p6w (3.7) 

Demanding that the primary constraints ~b~ and gj be preserved in the course 
of time, we obtain the secondary constraints 

~b2 = ( P ~ - q 2 -  V~)~0 

~2= (p2+q~ + V2)~0 

(3.8a) 

(3.8b) 

After including the primary constraints ~bt and gl of the theory in the 
canonical Hamiltonian H2c with the help of the as-yet-undetermined 
Lagrange multipliers u and w, one can write the total Hamiltonian Hzr 
(Dirac 1950, 1964) as 
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By demanding further that the secondary constraints ~b2 and g2 be also 
preserved in the course of  time, we obtain 

~b3 = (2q6 - p z  -P3 03 VI --p4 04 V1) ~ 0 (3.9a) 

~'3 = (-2q5 +Pl + P3 03 V2 +P4 04 V2) ~ 0 (3.9b) 

Demanding further that the constraints ~b3 and ~3 be also preserved in the 
course of  time, one does not obtain any additional constraints, implying that 
the theory possesses only six constraints, ~i ,  ~ ,  ~b2, ~'2, and ~b3, ~'3. Here, 
the first two constraints, namely, ~bl and ~t ,  are primary and the rest are 
secondary and have emerged from the two primary constraints ~bl and ~j .  
Accordingly, the theory described by the Lagrangian L2 equation (3.1) rep- 
resents a two-chain system. The Hamilton equations of  motion are 

OHzr 
:Li=Op: = [ ( P l -  q5), (P2-q6), (P3), (P4), (u), (w)] 

j =  1, 2, 3, 4, 5, 6 (3.10a) 

OH2r 
-P:  = = [(-q6), (qs), (q5 03 V, - q6 03 I:2 + 03 V3), 

Oqj 

(q5 04Vl--q6 04V2"{- 04V3), (-p~ + q2 + VO, 

( - P 2 - q , -  1:2)]; j =  1, 2, 3, 4, 5, 6 (3.10b) 

Next we calculate the Poisson brackets among the constraints ~b's and 
~,'s [given by equations (3.5), (3.8), (3.9)]. In the case of the one-chair~ 
system considered in the previous section, we saw that the upper half subset 
of  the constraint set had zero mutual Poisson brackets. For the present two-. 
chain system it is also possible to have the upper half subset of  the constraint 
set to have zero mutual Poisson brackets. In order for the upper half subset 
of  the constraint set to have zero mutual Poisson brackets for the two- 
chain system under consideration we rename the constraints of  the theory 
as follows: 

f ~  = ~bl =P5 ~ 0  (3.11 a) 

~'-~2 ~'-'~" ~/1 = p 6 ~ 0  (3.1 lb) 

f~3 = ~2 = (Pl - q2 - V~) ~ 0 (3.1 lc) 

f~4 = ~'2 = (P2 + q~ + V2) ~ 0 (3.1 ld) 

f~5 = ~b3 = (2q6 -P2 --P3 03 [:1 --p4 04 Vi ) ~ 0 (3.1 le) 

f16 = Ig3 = (--2q5 +pt +p3 03V2+p4 d4V2) ~ 0  (3,1 If)  
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The matrix R ~  := {f~,  s for the Poisson brackets among the constraints 
f~ equation (3.11) is then obtained a s  

0 0 
0 0 
0 0 

R~a = 0 0 

0 2 
-2  0 

0 0 0 2" 
0 0 - 2  0 
0 - 2  a - b  

2 0 - b  f 
- a  b 0 d 

b - f  - d  0 

where the values of a, b, d, and f are given by 

a = 1 + c332Vi +a4~Vj 

b = a3Vl 03V2 + a4V! 04V2 

d=-p3 02Vl 03V2-p4 O2Vl 04V2+p3 a3V~ c3~V2+p4 O4Vl ~2V 2 

f =  1 + v2 + v2 

The inverse of the matrix R~a is 

where 

0 
-g 

R~ = -f/4 
-b/4 

0 
1/2 

g f/4 b/4 0 -1 /2"  
0 b/4 a/4 1/2 0 

-b/4 0 1/2 0 0 

-a/4 - 1 / 2  0 0 0 
- 1 / 2  0 0 0 0 

0 0 0 0 0 

(3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.14) 

_d b2 . af 
(3.15) 

We thus find that the constraints ~ equation (3.11) are second class in the 
terminology of Dirac (1950, 1964), and consequently, Dirac's procedure is 
again applicable for the quantization of the two-chain system under 
consideration. 

Finally, the nonvanishing quantum commutators of the theory are 
obtained as 

[ff,, ff2]=i[g+:+ �89 (3.16) 

[,,,,3]=i[g O3V, +fp3 0~V, + �89 0~V2+ �89 O3V,] (3.17) 
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i a 

(�89 j=2,3,4,6 (3.27) 

L\ 4] 2 - 4  c3av' ' 2 - 4  c~4V, ; j = l ,  3, 4 (3.28) 

(-~ 03V~ &V~)l; j= 1, 2,3 (3.30) 

,.,.0,,:( (.+:1,(:1]; 
, -- IP30~V2 (3.33) 

[P4, (~,]=i[-gO4V,-fp402V,-�89 (3.34) 

where the ~'s and p's are again the quantum mechanical operators corre- 
sponding to the q's and p's, respectively. 

4. SUMMARY AND DISCUSSION 

As mentioned in Section 1, the results derived by Mitra and Rajaraman 
(1990a) for the algebra of Poisson brackets (at the classical level) for the 
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one-chain and two-chain systems considered in Sections 2 and 3 also hold for 
the commutators of the constraint operators in the corresponding quantized 
theories (Mitra and Rajaraman, 1990a). 

The fact that the constraints associated with the Lagrangians L~ equa- 
tion (2.2) and L2 equation (3.1) are second class is due to the lack of gauge 
invariance of L1 and L2. Gauge symmetry, however, when present in a 
theory has many beneficial consequences. Following the method of Mitra 
and Rajaraman (1990b), it is possible to reformulate the theories L~ equation 
(2.2) and L~ equation (3.1) as gauge-invariant theories (i.e., theories with 
first-class constraints) without any change in their physical contents. 

The main idea lies in suitably modifying the canonical Hamiltonian 
(and correspondingly the Lagrangian) of a particular (given) second-class 
(or gauge-noninvariant) theory in such a way that the chain of the con- 
stra~nts is terminated at a desired point before its natural end. The con- 
straints of the modified theory then form a set of first-class constraints 
and consequently the resulting modified theory becomes a gauge-invariant 
theory. The secondary constraints which did not appear in the modified 
theory (but were otherwise present in the original second-class theory) can 
now be imposed on the modified (gauge-invariant) theory as gauge-fixing 
conditions, so that the total set of constraints again becomes a second-class 
set. The Dirac quantization of the modified (gauge-invariant) theory under 
such gauge-fixing conditions remains identical with that of the original sec- 
ond-class (gauge-noninvariant) theory. Consequently, the physical content 
of the modified gauge-invariant theory under such gauge-fixing conditions 
remains the same as that of  the original second-class theory. The physical 
equivalence of the modified and the original theory is therefore transparent. 
Some possible gauge-invariant reformulations of the theories for L, equation 
(2.2) and L2 equation (3.1) (considered in Sections 2 and 3) have been given 
explicitly by Mitra and Rajaraman (1990b), for the details of which we refer 
to their work. The details of the properties of the algebra of Poisson brackets 
for the theories L~ equation (2.2) and L2 equation (3.1) are given by Mitra 
and Rajaraman (1990a). The properties of the algebra of Dirac brackets 
and those of the algebra of commutators for both the theories L~ equation 
(2.2) and L2 equation (3.1) are the same as the properties of the algebra of 
Poisson brackets for these theories derived by Mitra and Rajaraman (1990a) 
because there are no commutator anomalies in these theories (Mitra and 
Rajaraman, 1990a). 
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